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Scaling behavior of self-avoiding tethered vesicles
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The scaling behavior of self-avoiding tethered vesicles is analyzed using shell theory and scaling
arguments. For closed networks, there is a linear coupling between the out-of-plane undulation
modes and the in-plane phonon modes that causes a strong suppression of out-of-plane fluctuations
at long length scales. This leads to new scaling behavior, which has important consequences for
the analysis of experimental and simulation data. Molecular-dynamics simulation data for tethered
vesicles are also presented and analyzed using these results. We find that the exponent 7, which

describes the scale dependence of the bending rigidity, has the value n = 0.81 £ 0.03.
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Tethered surfaces are idealized models of flexible two-
dimensional solid sheets or molecular networks that are
free to fluctuate in three-dimensional space. These sur-
faces have a finite shear modulus so that the statistical
mechanics of tethered networks is controlled by a del-
icate interplay between the in-plane elastic modes and
the out-of-plane undulation modes. Two realizations of
these objects that have recently attracted a great deal
of attention are exfoliated graphite oxide crystals [1] and
the spectrin network of mammalian red blood cells [2—4].

Mammalian red blood cells consist of a multilayered
membrane structure made up of a cross-linked network of
proteins — the cytoskeleton — that lines the cytoplasm
side of the (liquid) lipid bilayer cell membrane. The cy-
toskeleton provides a shear elasticity that prevents mem-
brane loss during large deformations induced by flow in
the cardiovascular system. Understanding the statistical
thermodynamics of this polyelectrolytic network is a cru-
cial step in determining the properties of the composite
membrane, and ultimately, its role in the function of red
blood cells.

The lipids of the cell membrane can be dissolved by
detergent treatment, leaving behind an extracted mem-
brane skeleton. Freshly isolated skeletons are very flexi-
ble, roughly spherical shells. With a combination of light
and synchrotron-based small-angle x-ray scattering it has
been possible to characterize the extracted cytoskeleton
network and measure its static structure factor over four
orders of magnitude in length scale, thus providing the
best currently available experimental data on well char-
acterized tethered networks [2-4]. In particular, these
experiments support simulation results [4-7] that indi-
cate that self-avoiding tethered networks are in a “flat
phase” in which the rms amplitude of the out-of-plane
fluctuations scale with the in-plane length scale with a
power less than 1.

An analysis of the elastic Hamiltonian for zero mean
curvature tethered networks shows that in this phase,
the bending rigidity x diverges at large length scales,
whereas the in-plane elastic shear and compressional
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moduli soften to zero [8,9]. The renormalization of
the elastic constants arises from nonlinear couplings be-
tween the out-of-plane undulation modes and the in-
plane phonon modes. The stretching that accompanies
the bending of a tethered network of zero mean curvature
is a second-order effect in the out-of-plane displacement.
In a harmonic approximation, the out-of-plane undula-
tion modes remain eigenmodes of the system at all length
scales.

The situation is entirely different for closed networks;
in this case, dilatation or shear is a first-order effect, and,
for example, a spherical shell or tethered vesicle cannot
bend without being stretched. This property is most eas-
ily seen by considering the uniform stretching of a spher-
ical shell [10]. If every point of the sheet undergoes the
same radial displacement w, the length of the equator in-
creases by 2mw so that the strain tensor is proportional
to the first power of w. This very general property of
nonplanar closed shells has been known for over a cen-
tury [11,12]. Its consequences for the scaling behavior of
closed tethered networks, such as the red blood cell cy-
toskeletons studied in [2-4], do not, however, appear to
have been appreciated [13-15]. In this paper we explore
the consequences of this fact and present the results of an
analysis of the scaling behavior of self-avoiding tethered
vesicles. We consider a flaccid tethered sphere, which is
the simplest case to analyze; the results, however, remain
valid also in more general cases, such as when there are
constraints on the enclosed volume or surface area of the
vesicle. Molecular-dynamics simulation data for the equi-
librium structure of closed self-avoiding tethered vesicles
are also presented and analyzed using these results. We
find, in particular, that the exponent n that describes the
scale dependence of the bending rigidity has the value
n = 0.81 £ 0.03. This result for n is somewhat larger
than earlier estimates for open membranes with free edge
boundary conditions, but is in excellent agreement with
the value obtained using a self-consistent screening ap-
proximation [16].

For a closed, homogeneous surface, the elastic bending
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energy Fy is given by the Helfrich Hamiltonian [17]

K

Fy= 3 /dS (K = co)?, (1)

where dS is an element of area on the surface,  is the
bending rigidity, K& is the trace of the curvature ten-
sor (repeated indices are summed over), and co is the
spontaneous curvature. Here we assume that ¢g is a con-
stant equal to 2/R, where R is the average radius of the
spherical vesicle. In this case [12],

K§ =65/R+ D*Dgw + 65w/ R? (2)

to lowest order in the deformation, where D, (D<)
denote the two-dimensional covariant (contravariant)
derivatives in the internal coordinates of the surface and
w is a scalar field representing the radial displacements.
The dilatation and shear energy are given by [10,12]

A
F, = /dS [;LEEEE + E(Eg)z , (3)
where, for a sphere, the strain tensor [12]

Eg = %(D"‘vﬁ + Dﬁ’l)a) + 6§‘w/R (4)

to lowest order. v is a tangential vector describing the
deviation of a surface element of the shell from its zero-
temperature equilibrium position, v, and v® are the co-
variant and contravariant components of v, and A and p
are the Lamé constants of the two-dimensional network.
The total free-energy functional to second order in w and
v for the spherical shell is given by F' = F} + F..

v can be written as the sum of an irrotational and a
solenoidal part as

vg = DB\IJ + ’Y,yﬁD'YX, (5)

where ¥ and x are two scalar functions and -y, is the
alternating tensor in two dimensions. With the aid of (5),
the free energy can be written as F = Fy[w, U] + Fa[x],
where

Fiw, U] = /dS{gw(A +2/R?)2w

2K , 2K
TRt R vAY

+3 (K +m)(a9)? + v an)}, )
and
Falx] = /dS {4 axiax+2x/R)}; 7)

A is the two-dimensional Laplacian and K = p + A [18].
Note that there is no coupling between {w,¥} and x
so that the in-plane shear modes are eigenmodes of the
system. However, w and the longitudinal part of the in-
plane displacement field couple due to the presence of
the term 2KwA¥/R in (6). This coupling vanishes in
the limit R — oo, as it should.

The dispersion relation for the modes involving w and
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¥ can be determined by expanding in the spherical har-
monics Y;(0, ¢) [19]. Writing w =3, A1 RY;™ (0, ¢)
and ¥ = 37, B, R*Y™(0,¢), and using AY™ =
—[l( + 1)/R%*]Y;™, F; becomes

F, = ZR2{[n(l —1)2(1 + 2)%/(2R?) + 2K A2,
lom

—2Kl(l + 1)AlmBlm
+ 3+ DK + @l +1) = 2u]BE, . (8)

The normal modes of the shell are easily determined from
(8). In particular, for the relevant range of system pa-
rameters and [ greater than 2 or 3, the w-w propagator
Ay (l) = (R?A2 )~ is well approximated by

Aw() = k(1 —1)%(1 +2)*/R* + E, (9)

where E = 4uK /(K + p) is the two-dimensional Young
modulus. A, (0) = 4[x/R? + K], while A, (1) = 0; this
latter mode corresponds to a uniform translation of the
spherical surface. The spherical topology therefore leads
to an infrared cutoff for the out-of-plane modes. This is
due to the curvature induced linear coupling between the
undulation modes with the in-plane longitudinal phonon
modes. In contrast, the dispersion relation for the longi-
tudinal phonon mode is qualitatively similar to that in a
zero mean curvature tethered surface.

For a finite system, the ! sum in (8) is cut off at an
lpr determined by the requirement that the total number
of modes be equal to the number of degrees of freedom.
Denoting the number of degrees of freedom by 3N, this
means that (I + 1)2 ~ N. For a given system size,
the infrared cutoff in (9) is important for / smaller than
an [, such that (I, — 1)2(l. + 2)2 ~ ER?/k. It turns
out that 1 < I, < lps for the sytems of interest. For
a thin spherical shell of thickness a and radius R con-
structed from an isotropic material in three dimensions,
one finds [10,15], for example, & = (A + 2p)a?/12 so that
ER?/kx ~ (R/a)? > 1. For ared blood cell, x ~ 3x1072°
Jand E ~ 2x107°% J/m~2 [15,20-22]. Using an effective
radius R = 1 ym, one obtains ER?/x ~ 7 x 102. Finally,
for our simulations to be described below, we estimate
that ER?/k ~ 3N, where N is the number of surface
monomers, so that for large N, I, ~ (3N)Y/* ~ /Ij.
Thus in all three cases the coupling between the undu-
lation modes and the in-plane compressional modes will
influence the long length-scale fluctuation spectra of the
tethered network.

At length scales shorter than L* ~ (R%k/E)'%, the
fluctuation spectra of the shell are essentially the same
as that of a flat network. At these length scales, x as
well as A and p are scale dependent. In particular, the
bending rigidity will renormalize according to xkg(g) ~
koq~", and pgr(q) ~ Ar(q) ~ ¢“, where ¢ ~ [/R. The
exponents w and 7 obey the scaling relation w + 2n = 2
[9]. Renormalization continues until g ~ ¢., where ¢} ~
E(q.)/[R%k(q.)], or, equivalently, ¢2*" ~ Ey/[koR2]. For
q < q., renormalization stops and the elastic constants
remain proportional to their values at g. [23]. Note that
if I, ~ lpz, there will be no renormalization of the elastic
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constants [23].

Introducing these g-dependent renormalized elastic
constants into the Gaussian Hamiltonian corresponding
to (8) [24,25], we find, for example, that

Xv = V/(V2) = (V)2 = R*\/n/K(qc) ~ R¥/**"  (10)

and
Xg = 1/((R2)?) — (R2)2 ~ R/[4n K (q.)]"/?

~ R(4~7l)/(2+17), (11)

where we have assumed that 1 < I, < lpr (as we expect
to be the case in the systems of interest). Similarly,

(w?) = gi(%w_w;_) ~ R2(2-m)/(2+m) (12)

Equation (11) is often used to measure the amplitude
of the undulation fluctuations of the vesicle [4,26,27].
The difference between (11) and (12) is due to the fact
that the leading contribution to (11) is proportional to
({(fdSw [dSw))'/%/R, so that the contribution from
the | = n = 0 mode dominates. For a flat tethered
network the rms amplitude of the out-of-plane fluctu-
ations L, is related to the in-plane length scale L by
L, ~ L¢ with ¢ = 1 — /2. In contrast, (11) implies
G =(2-n/2)/(2+n), and (12), (2 = (2 —n)/(2 + 7).

We have performed extensive molecular-dynamics sim-
ulations of closed tethered vesicles containing between
N = 162 to 1962 monomers utilizing the same heat-
bath algorithm and potential parameters as Grest [28].
This model consists of a purely repulsive shifted Lennard-
Jones repulsive potential between all monomers as well
as a nonharmonic tethering potential between nearest
neighbors. In the following, all lengths are measured in
units of o, the length scale appearing in the Lennard-
Jones potential. In these units, the average interparticle
distance is approximately 0.97. Between 6 x 10° (for
N = 162) and 19 x 108 (for N = 1962) time steps were
used for evaluating averages.

Our results for x, as well as x4 are plotted in Fig.
1(a); those for (w?) in Fig. 1(b). There are rather large
finite-size effects, due either to the rigidity of our network
or the rather small value of the infrared cutoff for small
system sizes. Nevertheless, for larger systems, our results
are consistent with n = 0.81 £ 0.03. This value for 7 is
significantly larger than that obtained from simulations
of flat tethered networks, but is consistent with the result
VXg ~ NO0-%6 (which implies n ~ 0.83) quoted in Refs.
[4] and [27]. It also agrees with recent theoretical results
described in Ref. [16].

The data can be used to estimate K (g.) and x(g.). In
particular, the results for x4 imply K(q.) ~ 45072 for
N = 642, and this result, together with (12), suggests
that k(g.) =~ 6 for this system size [29]. We estimate the
uncertainty in K (g.) to be on the order of 10 — 20 %; the
estimate for k(g.) is less accurate.

Finally, in Fig. 2 we present our results for the di-
rectionally averaged structure factor S(g) for N = 642
and 1962 plotted as a function of z = gqR?/3=¢) using
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FIG. 1. (a) xv (X) and x4 (¢) vs R = \/R_f, ~ /N for
N = 162, 252, 362, 492, 642, and 1962. The dashed line has
the slope 2.15 (n = 0.79), the dotted line, 1.13 (n = 0.82). (b)
(w?) vs R for the same system sizes. The dotted line has the
slope 0.81 (7 = 0.85). Due to the large finite-size corrections,
this is clearly an overestimate of the true value of 7.

¢ = 0.6 (which corresponds to n = 0.8). The oscillations
characteristic of the spherical shell form factor persist to
rather large q vectors because of the ideal monodisper-
sity of our network and the small amplitude of fluctua-
tions. We expect [30], in general, that S(q) ~ 1/x3~¢ for
1/0 > q > q.. The solid line is a plot of the expected
large-g behavior =39 for ¢ = 0.6. This result is in
good agreement with the experimental data of Ref. [4].
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FIG. 2. Directionally averaged structure factor S(g) vs
gR?/ =9 for system sizes N = 642 (dashed line) and 1962
(solid line) using n = 0.8. The dotted line is a plot of
1/(R?¢*¢) for this same value of 7.
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We have shown that the linear coupling between out-
of-plane undulation modes and in-plane phonon modes
in closed tethered surfaces leads to new scaling behavior
at large length scales. These results were used to analyze
molecular-dynamics data for closed flaccid tethered vesi-
cles. We find that n ~ 0.8, a value considerably larger
than that obtained in simulation studies of open, flat
networks [5-7], but in excellent agreement with the value
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determined using a self-consistent screening approxima-
tion [16].
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